

Available online at www.sciencedirect.com



Journal of Photochemistry Photobiology A:Chemistry

Journal of Photochemistry and Photobiology A: Chemistry 172 (2005) 331-336

www.elsevier.com/locate/jphotochem

Short communication

# Different relative rates for photo-rearrangements of (E)- and (Z)- $\beta$ -nitrostyrene derivatives to oximinoketones

M.Z. Kassaee\*, E. Vessally

Department of Chemistry, College of Sciences, Tarbiat Modarres University, Tehran, Iran

Received 19 October 2004; received in revised form 7 December 2004; accepted 14 December 2004 Available online 30 January 2005

#### Abstract

New details on photochemistry of  $\beta$ -nitrostyrene derivatives are found, using a 500 MHz NMR spectrometer, instead of the formerly employed UV spectroscopy, where simply photo-rearrangement of (*E*)- $\beta$ -methyl- $\beta$ -nitrostyrene,  $\mathbf{1}_E$ , to 1-phenyl-1,2-propanedione-1-oxime,  $\mathbf{2}$ , as well as *cis–trans* isomerization of (*E*)- $\beta$ -nitrostyrene,  $\mathbf{3}_E$ , to (*Z*)- $\beta$ -nitrostyrene,  $\mathbf{3}_Z$ , were reported. Here, using similar conditions such as light intensity, relative rates are found for *cis–trans* isomerization of  $\mathbf{1}_E$  to (*Z*)- $\beta$ -methyl- $\beta$ -nitrostyrene,  $\mathbf{1}_Z$ ; as well as novel photo-rearrangements of:  $\mathbf{1}_Z$  to  $\mathbf{2}$ ;  $\mathbf{3}_Z$  to 1-phenyl-1,2-ethandione-1-oxime,  $\mathbf{4}$ ; and  $\mathbf{3}_E$  to  $\mathbf{4}_-$  <sup>1</sup>H NMR preliminary kinetic analysis show isomerization of  $\mathbf{1}_E$  to  $\mathbf{1}_Z$  occurring at a relative rate of  $k_{i-Me} = 0.083 \text{ s}^{-1}$ . Both  $\mathbf{1}_E$  and  $\mathbf{1}_Z$  go through a nitro-nitrite photo-rearrangement to  $\mathbf{2}$  with relative  $k_{r-Me} = 0.011 \text{ s}^{-1}$  and  $k'_{r-Me} = 0.070 \text{ s}^{-1}$ , respectively. Under the same conditions, photo-isomerization of  $\mathbf{3}_E$  to  $\mathbf{3}_Z$  takes place at relative  $k_{i+H} = 0.011 \text{ s}^{-1}$ . The rates of photo-rearrangements of  $\mathbf{3}_E$  as well as  $\mathbf{3}_Z$  to  $\mathbf{4}$  are measured with relative  $k_r = 0.025 \text{ s}^{-1}$  and  $k'_r = 0.010 \text{ s}^{-1}$ , respectively.  $\mathbb{O}$  2004 Elsevier B.V. All rights reserved.

*Keywords:* β-Nitrostyrene; β-Methyl-β-nitrostyrene; *Cis-trans* isomerization; Nitro-nitrite rearrangement; NMR; Rates of reaction; Photo-rearrangement; Nitroolefins

# 1. Introduction

β-Nitrostyrenes are important intermediates in organic syntheses [1]. They are used as starting materials for many classes of compounds [2–6]. Their photolysis has received considerable attention [7–32]. Solar irradiation of (*E*)-βmethyl-β-nitrostyrene,  $\mathbf{1}_E$ , results in its geometrical isomer: (*Z*)-β-methyl-β-nitrostyrene,  $\mathbf{1}_Z$  (Scheme 1, path a) [23].

Photolysis of  $\mathbf{1}_E$  gives 1-phenyl-1,2-propanedione-1oxime,  $\mathbf{2}$ , in a quantitative yield (Scheme 1, path b) [17]. Substituent effects on photo-rearrangement of  $\mathbf{1}_E$  to  $\mathbf{2}$  are reported by us and others [18,24–30]. We found a rather small Hammett  $\rho$  of 0.7 which reflects the small sensitivity of such nitro-nitrite photo-rearrangements to the electronic effects of substituents [18]. Up to date, no report on intermediacy of  $\mathbf{1}_Z$  in photo-conversion of  $\mathbf{1}_E$  to  $\mathbf{2}$  has appeared. Also, photo-rearrangements of neither  $\mathbf{1}_Z$  to  $\mathbf{2}$ , nor  $\mathbf{3}_E$  to  $\mathbf{4}$  are reported. As a follow up to our  $\beta$ -nitrostyrene mechanistic studies [18–22], here, new insights including relative preliminary kinetic rates for the involvement of the later compounds in the photochemistry of  $\beta$ -nitrostyrene derivatives are reported, using similar conditions such as light intensity (Scheme 1).

#### 2. Experimental

The UV irradiation source employed is a Hanovia type 400 W low-pressure mercury arc lamp. Ultraviolet spectra are recorded on a Shimadzu model UV-200. IR spectra are determined on a Shimadzu model IR-460. NMR spectra are performed on a 500 MHz NMR Bruker and a Jeol FT-NMR, TNM-EX-90A. GC/MS spectra are recorded on Perkin-Elmer 8420 capillary gas chromatograph with ITD Finnigan-Mat Perkin-Elmer ion trap detector. Vapor phase chromatog-

<sup>\*</sup> Corresponding author. Tel.: +98 91 2100 0392; fax: +98 21 800 6544. *E-mail addresses:* kassaeem@modares.ac.ir, drkassaee@yahoo.com (M.Z. Kassaee).

<sup>1010-6030/\$ -</sup> see front matter © 2004 Elsevier B.V. All rights reserved. doi:10.1016/j.jphotochem.2004.12.017



Scheme 1. Photochemistry of geometrical isomers of  $\beta$ -nitrostyrenes:  $\mathbf{1}_E$ ,  $\mathbf{1}_Z$ ,  $\mathbf{3}_E$  and  $\mathbf{3}_Z$ .

raphy is carried out on a Varion model 1720 with disc integrator and temperature programming capability. Melting points are measured using Gallenchamp and are uncorrected.

#### 2.1. Syntheses

Methods of Gaired and Lappin [33] and the Robertson [34] are used for the synthesis of  $\mathbf{1}_E$  and  $\mathbf{3}_E$ .

### 2.1.1. (E)- $\beta$ -Methyl- $\beta$ -nitrostyrene, $I_E$ [18]

Yellow crystals; mp 63–64 °C (from EtOH); m/z 163( $M^+$ 41.7%), 162(1.8), 146(13.3), 135(10), 117(25.9), 116(45), 115(100), 106(38.3), 91(55), 77(16.7), 63(20). <sup>1</sup>H NMR (CDCl<sub>3</sub>)  $\delta$ : 2.5(3H, d, Me), 7.2–7.7(5H, m, ArH), 8.1(1H, s); UV  $\lambda_{max}$ (EtOH), 305 nm,  $\varepsilon_{max}$  115; yield 60%.

## 2.1.2. (E)- $\beta$ -Nitrostyrene, $3_E$ [32]

Yellow crystals; mp 60–61 °C (from EtOH); m/z 148( $M^+$  31.7%), 117(23.9), 116(41), 115(100), 106(35.3), 91(45), 77(14.7), 63(20). <sup>1</sup>H NMR (CDCl<sub>3</sub>)  $\delta$ : 6.8(2H, d), 7.2–7.7(5H, m, ArH), 8.1(2H, d); UV  $\lambda_{max}$ (EtOH), 300 nm,  $\varepsilon_{max}$  115; yield 70%.

The authentic sample of  $\mathbf{1}_Z$  is synthesized by the procedure of Ono et al. [35]. Treatment of (E)- $\beta$ -methyl- $\beta$ -nitrostyrene,  $\mathbf{1}_E$ , with sodium benzeneselenolate, generated in situ from diphenyl diselenide and NaBH<sub>4</sub> in ethanol, followed by protonation with acetic acid at  $-78 \,^{\circ}\text{C}$  afforded *erythro*- $\beta$ -nitroselenide stereoselectively. Treatment of the  $\beta$ -nitroselenide with H<sub>2</sub>O<sub>2</sub> at 0  $^{\circ}\text{C}$  resulted in the elimination of benzeneselenic acid to give (Z)- $\beta$ -methyl- $\beta$ -nitrostyrene,  $\mathbf{1}_Z$ .

## 2.1.3. (Z)- $\beta$ -Methyl- $\beta$ -nitrostyrene, $I_Z$ [23,35]

White crystals; mp 50–51 °C (from EtOH). <sup>1</sup>H NMR (CDCl<sub>3</sub>)  $\delta$ : 2.48(3H, d, Me), 7.2–7.7(5H, m, ArH), 6.6(1H, s); UV  $\lambda_{max}$ (EtOH), 270 nm,  $\varepsilon_{max}$  104; yield 20%.

# 2.2. Photoproducts

A solution is prepared by dissolving 2 g of  $\mathbf{1}_E$  (or  $\mathbf{1}_Z$ ) in 550 ml of 95% ethanol. The solution is degassed for one half

hour with  $N_2$ . The ultraviolet irradiation is stopped after 3 h and the solvent removed under reduced pressure. Photolysis mixture is separated via PTLC; white crystals are obtained.

#### 2.2.1. 1-Phenyl-1,2-propanedione-1-oxime, 2 [18]

White crystals; mp 173 °C (from EtOH); *m/z* 163(*M*<sup>+</sup> 30%), 158(31), 146(13), 117(23), 116(91), 115(100), 106(33), 91(45), 77(19), 63(17).

<sup>1</sup>H NMR (CDCl<sub>3</sub>) δ: 2.5(3H, d, Me), 7.1–7.5(5H, m, ArH); yield 53%.

# 2.3. Preliminary kinetic studies

Upon irradiation of  $\mathbf{3}_E$ , both  $\mathbf{3}_Z$  and  $\mathbf{4}$  are generated and identified by NMR.

Sample solutions are prepared by dissolving  $1.2 \times 10^{-4}$  mol of  $\mathbf{1}_{E}$ ,  $\mathbf{1}_{Z}$  or  $\mathbf{3}_{E}$  in 0.5 ml CD<sub>3</sub>Cl in quartz NMR tubes and then degassed under argon atmosphere. Irradiation are carried out using similar conditions such as light intensity, with a low-pressure mercury lamp by a monochromatic UV light with  $\lambda_{max} = 254$  nm at room temperature. The progresses of the photochemical reactions are monitored by <sup>1</sup>H NMR spectroscopy. Changes of nitroolefins are measured by integration of the corresponding starting materials, intermediates and product peaks.

2.3.1. 1-Phenyl-1,2-ethanedione-1-oxime, **4** <sup>1</sup>H NMR (CDCl<sub>3</sub>) δ: 7.2–7.7(5H, m, ArH), 9.7(1H, s).

#### 3. Results and discussion

A serious problem with the previous works on the photochemistry of  $\beta$ -nitrostyrenes is the overwhelming usage of UV analyses, where many details were masked [5–17]. As a follow up on our  $\beta$ -nitrostyrene mechanistic studies [16,17], we have employed a 500 MHz NMR in photolysis of (*E*)- $\beta$ -methyl- $\beta$ -nitrostyrene,  $\mathbf{1}_E$ , (*Z*)- $\beta$ methyl- $\beta$ -nitrostyrene,  $\mathbf{1}_Z$ , (*E*)- $\beta$ -nitrostyrene,  $\mathbf{3}_E$ , and (*E*)- $\beta$ -nitrostyrene,  $\mathbf{3}_Z$  (paths: a, b', d and d' in Scheme 1). New

Table 1 Ab initio calculations of torsion angles for  $\mathbf{1}_E$ ,  $\mathbf{1}_Z$ ,  $\mathbf{3}_E$ , and  $\mathbf{3}_Z$ 



 $1_{E}(3_{E})$ 

| Torsional angle | Basis set | $1_E$ singlet | $3_E$ singlet | $1_E$ triplet | $3_E$ triplet | $3_Z$ singlet | $1_Z$ singlet | $3_Z$ triplet | $1_Z$ triplet |
|-----------------|-----------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|
| 1-6-7-8         | Sto-3G    | 36.73         | 0.00          | 46.88         | 5.09          | 45.32         | 43.92         | -40.31        | 34.93         |
| 1-6-7-8         | 6-31G*    | 44.10         | 0.00          | 34.53         | 33.67         | 36.01         | 43.99         | 47.31         | 48.61         |
| 7-8-10-12       | Sto-3G    | 1.19          | 0.00          | 20.06         | -21.66        | 28.13         | 44.15         | -45.81        | 54.87         |
| 7-8-10-12       | 6-31G*    | -5.48         | 0.00          | -0.95         | -11.21        | 7.97          | 44.21         | 32.81         | 41.41         |
| 7-8-10-11       | Sto-3G    | -179.02       | 180.00        | 154.35        | -155.95       | -154.04       | -137.81       | -176.44       | -176.99       |
| 7-8-10-11       | 6-31G*    | -174.20       | 180.00        | 131.37        | -161.13       | -173.26       | -137.68       | -179.34       | -172.17       |

findings in this manuscript reveal intermediacy of  $\mathbf{1}_Z$  in photoconversion of  $\mathbf{1}_E$  to  $\mathbf{2}$  as well as photo-rearrangements of  $\mathbf{1}_Z$  to 1-phenyl-1,2-propanedione-1-oxime,  $\mathbf{2}$ , plus  $\mathbf{3}_E$  to 1phenyl-1,2-ethandione-1-oxime,  $\mathbf{4}$ , at different relative rates. Such details were not recognized before; instead, general statements were made to explain the steric aspects of these reactions. For instance, on the photo-rearrangement of  $\beta$ methyl- $\beta$ -nitrostyrene,  $\mathbf{1}$ , to the ketooxime,  $\mathbf{2}$ , it was stated: "steric features of *the molecule* which tend to hold the nitrogroup out of the plane of the double bond, i.e., out of conjugation greatly facilitate the reaction" [15]. However, no clear reference to the geometrical isomerization ( $\mathbf{1}_E$  versus  $\mathbf{1}_Z$ ) and/or the electronic state of "*the molecule*" (S<sub>0</sub> versus T<sub>1</sub>, etc.) was made. One may presume "*the molecule*" they were scrutinizing was  $\mathbf{1}_E$  with the electronic state of S<sub>0</sub>. It was then suggested that the  $\beta$ -methyl group distorts the planarity of nitro-alkenyl moiety in  $\beta$ -methyl- $\beta$ -nitrostyrene; while hydrogen was not able to do such a distortion of the planarity to  $\beta$ -nitrostyrene. Consequently, this distortion of planarity, enhances the  $n \rightarrow \pi^*$  excitation to the extent where the oximinoketone, **2**, is formed from photo-rearrangement of  $\beta$ -methyl- $\beta$ -nitrostyrene; while no trace of **4** was detected from the photo-rearrangement of  $\beta$ -nitrostyrene (Scheme 1) [5,15]. However, the X-ray [36] and our semi-empirical calculations did not show any significant difference between the nitro-alkenyl planarity of **1**<sub>E</sub> compared to **3**<sub>E</sub>. Another word, contrary to what was suggested,  $\beta$ -methyl group in **1**<sub>E</sub>, does not appear to "hold the nitro-group out of the plane of the double bond, i.e., out of conjugation", anymore than the  $\beta$ -hydrogen in **3**<sub>E</sub>. In order to resolve this planarity dilemma,



Fig. 1. Tracing <sup>1</sup>H NMR spectra of (*E*)- $\beta$ -methyl- $\beta$ -nitrostyrene,  $\mathbf{1}_E$ , photo-isomerization to (*Z*)- $\beta$ -methyl- $\beta$ -nitrostyrene,  $\mathbf{1}_Z$ , followed by photo-rearrangement of  $\mathbf{1}_Z$  (and trace  $\mathbf{1}_E$ ) to 1-phenyl-1,2-propanedione-1-oxime,  $\mathbf{2}$ .



Fig. 2. Tracing <sup>1</sup>H NMR spectra of (Z)- $\beta$ -methyl- $\beta$ -nitrostyrene,  $\mathbf{1}_Z$ , photo-rearrangement to 1-phenyl-1,2-propanedione-1-oxime,  $\mathbf{2}_Z$ .



Fig. 3. Changes of  $\mathbf{1}_E$ ,  $\mathbf{1}_Z$  and  $\mathbf{2}$  during photolysis of  $\mathbf{1}_E$  as a function of irradiation times using similar conditions such as light intensity: (a) Photolysis of pure  $\mathbf{1}_E$  as a function of time; (b) photoproduction of  $\mathbf{1}_Z$  from  $\mathbf{1}_E$  followed by photo-conversion of  $\mathbf{1}_Z$  to  $\mathbf{2}$ ; (c) photoproduction of  $\mathbf{2}$  from  $\mathbf{1}_Z$ .

we carried out an ab initio survey at HF/Sto-3g, HF/6-31G<sup>\*</sup> and B3LYP/6-31G<sup>\*</sup> levels of theory optimizing  $\mathbf{1}_E$ ,  $\mathbf{3}_E$ ,  $\mathbf{1}_Z$ and  $\mathbf{3}_Z$  (Table 1). Amazingly, they do not show much of difference between nitro-alkenyl planarity of ground states (S<sub>0</sub>) of  $\mathbf{1}_E$  versus  $\mathbf{3}_E$ . However, geometrical differences are relatively more pronounced for triplets (T<sub>1</sub>) of  $\mathbf{1}_E$  and  $\mathbf{3}_E$  which were not considered before.

In an attempt to solve this problem experimentally, a pure sample of  $\mathbf{1}_E$  [24,25] is synthesized and irradiated in ethanol, using a low-pressure mercury lamp with a monochromatic UV light ( $\lambda_{max} = 254$  nm). Photochemical changes of  $\mathbf{1}_E$  are monitored by a Bruker 500 MHz NMR, every 5 min, through integration of the corresponding <sup>1</sup>H NMR peaks. Intensities of  $\mathbf{1}_E$  absorption peaks: a, b and c; gradually decrease as a function of time (Fig. 1). Simultaneously, new absorption peaks: a', b' and c' appear which correspond to  $\mathbf{1}_Z$  (t = 20 min). Finally, absorptions related to **2**: a'', b'' and c'' (t = 50 min) come to existence at the expense of disappearing  $\mathbf{1}_E$  and  $\mathbf{1}_Z$  peaks. Traces of benzaldehyde, **13**, suggested by Matsuura et al. [25], is clearly detected at 9.8 ppm (t = 40 min). In order

to substantiate photolysis of  $\mathbf{1}_E$ , an authentic sample of  $\mathbf{1}_Z$  is synthesized [35] and irradiated under the same conditions (Fig. 2). Again, the progress of photolysis of  $\mathbf{1}_Z$  is monitored via <sup>1</sup>H NMR. All  $\mathbf{1}_Z$  is converted to **2**, except for its trace isomerization to  $\mathbf{1}_E$ .

Using similar conditions such as light intensity, <sup>1</sup>H NMR tracings preliminary kinetic analysis of conversions  $\mathbf{1}_E$  to  $\mathbf{1}_Z$  and  $\mathbf{1}_Z$  to  $\mathbf{2}$  are carried out (Fig. 3). Reporting <sup>1</sup>H NMR (Figs. 1 and 2), instead of <sup>13</sup>C NMR spectral results, is to avoid possible integration errors, due to nuclear Overhauser effects (nOe) [37]. Thereby, isomerization of  $\mathbf{1}_E$  to  $\mathbf{1}_Z$  occurs at a relative rate of  $k_{i-Me} = 0.083 \text{ s}^{-1}$ . Both  $\mathbf{1}_E$  and  $\mathbf{1}_Z$  go through a nitro-nitrite photo-rearrangement to  $\mathbf{2}$  with relative  $k_{r-Me} = 0.011 \text{ s}^{-1}$  and  $k'_{r-Me} = 0.070 \text{ s}^{-1}$ , respectively.

A pure sample of  $\mathbf{3}_E$  [24,25] is also synthesized and irradiated under similar condition used for  $\mathbf{1}_E$ . Its <sup>1</sup>H NMR peaks, including a doublet at 8.05 ppm (H<sub>trans</sub>-olefin), gradually decrease while the doublet of newly born  $\mathbf{3}_Z$  (H<sub>cis</sub>-olefin) appears at 6.9 ppm. Meanwhile, the absorptions corresponding to **4** grow. Photo-isomerization of  $\mathbf{3}_E$  to  $\mathbf{3}_Z$  takes



Scheme 2. Revised provisional mechanism for photochemistry of  $\mathbf{1}_E$  and  $\mathbf{3}_E$  [18].

place at the relative rate  $k_{i-H} = 0.011 \text{ s}^{-1}$ . The relative rates of photo-rearrangements of  $\mathbf{3}_E$  and  $\mathbf{3}_Z$  to  $\mathbf{4}$  are measured with  $k_r = 0.025 \text{ s}^{-1}$  and  $k'_r = 0.010 \text{ s}^{-1}$ , respectively.

The previously reported possible mechanism shown in Scheme 2 is now further elucidated by our results. This mechanism, while not totally substantiated yet, appears to complete and unify ideas proposed by Chapman [14,17], Pinhey [24], Matsuura [25], Reasoner and us [18,26].

# 4. Conclusion

Using similar conditions such as light intensity, an unprecedented relative rate is found for *cis-trans* photoisomerization of (*E*)- $\beta$ -methyl- $\beta$ -nitrostyrene,  $\mathbf{1}_E$ , to (*Z*)- $\beta$ -methyl- $\beta$ -nitrostyrene,  $\mathbf{1}_Z$  ( $k_{i-Me} = 0.083 \text{ s}^{-1}$ ). Under the same conditions, relative rates are also found for novel photo-rearrangements of:  $\mathbf{1}_Z$  to 1-phenyl-1,2-propanedione-1-oxime, **2** ( $k'_{r-Me} = 0.070 \text{ s}^{-1}$ ); (Z)- $\beta$ -nitrostyrene,  $\mathbf{3}_Z$ , to 1-phenyl-1,2-ethandione-1-oxime, **4** ( $k'_r = 0.010 \text{ s}^{-1}$ ); and  $\mathbf{3}_E$  to **4** ( $k_r = 0.025 \text{ s}^{-1}$ ). Further <sup>1</sup>H NMR preliminary kinetic analysis show a nitro-nitrite photo-rearrangement of  $\mathbf{1}_E$  to **2** with relative  $k_{r-Me} = 0.011 \text{ s}^{-1}$ . Under the same conditions, photo-isomerization of  $\mathbf{3}_E$  to  $\mathbf{3}_Z$  takes place at a relative  $k_{i-H} = 0.011 \text{ s}^{-1}$ .

## Acknowledgments

We acknowledge technical supports of Mr. H. Bijan-Zadeh and Mr. M. Abas-Por and cooperation of Dr. Mahjoob, Dr. A. Heydari, Ms. M. Koohi and Mr. S.M. Musavi, at the Chemistry Department of Tarbiat Modarres University.

# References

- [1] L. Ju-Tsung, Y. Ching-Fa, Tetrahedron Lett. 42 (2001) 6147.
- [2] E.J. Corey, H. Estreicher, J. Am. Chem. Soc. 100 (1978) 6294.
- [3] D. Seebach, E.W. Colvin, T. Weller, Chimia 33 (1979) 1.
- [4] A.G.M. Barrett, G.G. Graboski, Chem. Rev. 86 (1986) 751.
- [5] G. Rosini, R. Ballini, Synthesis (1988) 833.
- [6] A.G.M. Barrett, Chem. Soc. Rev. 20 (1991) 95.
- [7] O.L. Chapman, P.G. Clevland, E.D. Hoganson, Chem. Commun. (1966) 110.
- [8] J.T. Pinhey, E. Rizzardo, Chem. Commun. (1965) 362.
- [9] J.S. Cridland, S.T. Reid, Chem. Commun. (1969) 125.
- [10] R. Hunt, S.T. Reid, K.T. Taylor, Tetrahedron Lett. (1972) 2861.
- [11] G.D. Howarth, D.G. Lange, W.A. Szarek, J.K.N. Jones, Can. J. Chem. 47 (1969) 81.
- [12] Y. Kitaura, T. Matsuura, Tetrahedron 27 (1971) 1583.
- [13] D. Dopp, Chem. Ber. 104 (1971) 1058.
- [14] O.L. Chapman, D.C. Heckere, J.W. Reasoner, S.P. Thackaberry, J. Am. Chem. Soc. 88 (1966) 5550.
- [15] R. Hunt, S.T. Reid, J. Chem. Soc. Perkin I (1972) 2527.
- [16] M.B. Greon, E. Havinga, Mol. Photochem. (1974) 699.
- [17] O.L. Chapman, A.A. Griswold, E.D. Hoganson, G. Lenz, J.W. Reasoner, Pure Appl. Chem. 9 (1964) 585.
- [18] M.Z. Kassaee, M.A. Nassari, J. Photochem. Photobiol. A 136 (2000) 41.
- [19] M.Z. Kassaee, E. Vessally, Proceedings of the Ninth Iranian Seminar of Organic Chemistry, Book of Abstract, University of Imam Hossein, 16–18 October, 2001, p. 363.

- [20] M.Z. Kassaee, E. Vessally, Proceedings of the Third Congress of Chemistry, Book of Abstract, Islamic Azad University, 10–11 April, 2002, p. 61.
- [21] M.Z. Kassaee, E. Vessally, Proceedings of the 10th Iranian Seminar of Organic Chemistry, ISOC10, Book of Abstract, University of Guilan, 16–18 October, 2002, pp. 2–196.
- [22] M.Z. Kassaee, E. Vessally, Proceedings of the 55th Pittsburgh Conference, Oral Presentation, Pittcon., March 12, 2004.
- [23] D.B. Miller, P.W. Flanagan, H. Shechter, J. Org. Chem. 41 (1976) 12.
- [24] J.T. Pinhey, E. Rizzardo, Tetrahedron Lett. 41 (1973) 4057.
- [25] T. Matsuura, I. Saito, M. Takami, Tetrahedron Lett. 36 (1975) 3155.
- [26] M.Z. Kassaee, MS Thesis, Western Kentucky University, 1976.
- [27] M.A. Nassari, MS Thesis, Tarbiat Modares University, Tehran, Iran, 1995.
- [28] M.Z. Kassaee, M.A. Nassari, Proceedings of the Third Iranian Seminar of Organic Chemistry, Book of Abstract, University of Arak, 16–18 August, 1996, p. 60.
- [29] M.Z. Kassaee, H. Larijanee, Proceedings of the Seventh Iranian Seminar of Organic Chemistry, Book of Abstract, University of Tehran, 12–13 September, 1999, p. 97 and 169.
- [30] D.C.L. Tang, MS Thesis, Western Kentucky University, 1975.
- [31] B. Priebs, Annals 225 (1884) 339.
- [32] A.L. Bluhm, J. Weinstein, J. Am. Chem. Soc. 87 (1965) 5511.
- [33] C.B. Gaired, G.R. Lappin, J. Org. Chem. (1953) 31.
- [34] D.N. Robertson, J. Org. Chem. 25 (1960) 47.
- [35] N. Ono, A. Kamimura, T. Kawai, A. Kaji, J. Chem. Soc., Chem. Commun. (1987) 1550.
- [36] D. Boys, V. Manriquez, B.K. Cassels, Acta Cryst. C49 (1993) 387.
- [37] M.Z. Kassaee, H. Heydari, M. Hattami, A. Fazli Nia, Macromolecules 36 (2003) 6773.