

Available online at www.sciencedirect.com

Photochemistry Photobiology

Journal of Photochemistry and Photobiology A: Chemistry 172 (2005) 331–336

www.elsevier.com/locate/iphotochem

Short communication

Different relative rates for photo-rearrangements of (*E*)- and (*Z*)-β-nitrostyrene derivatives to oximinoketones

M.Z. Kassaee∗, E. Vessally

Department of Chemistry, College of Sciences, Tarbiat Modarres University, Tehran, Iran

Received 19 October 2004; received in revised form 7 December 2004; accepted 14 December 2004 Available online 30 January 2005

Abstract

New details on photochemistry of β -nitrostyrene derivatives are found, using a 500 MHz NMR spectrometer, instead of the formerly employed UV spectroscopy, where simply photo-rearrangement of (E) - β -methyl- β -nitrostyrene, $\mathbf{1}_E$, to 1-phenyl-1,2-propanedione-1-oxime, **2**, as well as *cis–trans* isomerization of (E) - β -nitrostyrene, \mathfrak{Z}_E , to (Z) - β -nitrostyrene, \mathfrak{Z}_Z , were reported. Here, using similar conditions such as light intensity, relative rates are found for *cis–trans* isomerization of $\mathbf{1}_E$ to (*Z*)- β -methyl- β -nitrostyrene, $\mathbf{1}_Z$; as well as novel photo-rearrangements of: 1_z to 2; 3_z to 1-phenyl-1,2-ethandione-1-oxime, 4; and 3_E to 4. ¹H NMR preliminary kinetic analysis show isomerization of 1_E to 1_Z occurring at a relative rate of $k_{i\text{-Me}} = 0.083 \text{ s}^{-1}$. Both $\mathbf{1}_E$ and $\mathbf{1}_Z$ go through a nitro-nitrite photo-rearrangement to **2** with relative $k_{i\text{-Me}} = 0.011 \text{ s}^{-1}$ and *k* r-Me = 0.070 s−1, respectively. Under the same conditions, photo-isomerization of **3***^E* to **3***^Z* takes place at relative *k*i-H = 0.011 s−1. The rates of photo-rearrangements of 3_E as well as 3_Z to 4 are measured with relative $k_r = 0.025$ s^{−1} and $k'_r = 0.010$ s^{−1}, respectively. © 2004 Elsevier B.V. All rights reserved.

Keywords: β -Nitrostyrene; β -Methyl- β -nitrostyrene; *Cis-trans* isomerization; Nitro-nitrite rearrangement; NMR; Rates of reaction; Photo-rearrangement; Nitroolefins

1. Introduction

-Nitrostyrenes are important intermediates in organic syntheses [\[1\].](#page-5-0) They are used as starting materials for many classes of compounds [\[2–6\].](#page-5-0) Their photolysis has received considerable attention $[7-32]$. Solar irradiation of (E) - β methyl- β -nitrostyrene, $\mathbf{1}_E$, results in its geometrical isomer: (Z) - β -methyl- β -nitrostyrene, $\mathbf{1}_Z$ ([Scheme 1, p](#page-1-0)ath a) [\[23\].](#page-5-0)

Photolysis of **1***^E* gives 1-phenyl-1,2-propanedione-1 oxime, **2**, in a quantitative yield ([Scheme 1,](#page-1-0) path b) [\[17\].](#page-5-0) Substituent effects on photo-rearrangement of $\mathbf{1}_E$ to 2 are reported by us and others [\[18,24–30\]. W](#page-5-0)e found a rather small Hammett ρ of 0.7 which reflects the small sensitivity of such nitro-nitrite photo-rearrangements to the electronic effects of substituents [\[18\].](#page-5-0)

Up to date, no report on intermediacy of 1_Z in photo-conversion of $\mathbf{1}_E$ to 2 has appeared. Also, photorearrangements of neither $\mathbf{1}_Z$ to $\mathbf{2}$, nor $\mathbf{3}_E$ to $\mathbf{4}$ are reported. As a follow up to our β -nitrostyrene mechanistic studies [\[18–22\],](#page-5-0) here, new insights including relative preliminary kinetic rates for the involvement of the later compounds in the photochemistry of β -nitrostyrene derivatives are reported, using similar conditions such as light intensity [\(Scheme 1\).](#page-1-0)

2. Experimental

The UV irradiation source employed is a Hanovia type 400 W low-pressure mercury arc lamp. Ultraviolet spectra are recorded on a Shimadzu model UV-200. IR spectra are determined on a Shimadzu model IR-460. NMR spectra are performed on a 500 MHz NMR Bruker and a Jeol FT-NMR, TNM-EX-90A. GC/MS spectra are recorded on Perkin-Elmer 8420 capillary gas chromatograph with ITD Finnigan-Mat Perkin-Elmer ion trap detector. Vapor phase chromatog-

[∗] Corresponding author. Tel.: +98 91 2100 0392; fax: +98 21 800 6544. *E-mail addresses:* kassaeem@modares.ac.ir, drkassaee@yahoo.com (M.Z. Kassaee).

^{1010-6030/\$ –} see front matter © 2004 Elsevier B.V. All rights reserved. doi:10.1016/j.jphotochem.2004.12.017

Scheme 1. Photochemistry of geometrical isomers of β -nitrostyrenes: $\mathbf{1}_E$, $\mathbf{1}_Z$, $\mathbf{3}_E$ and $\mathbf{3}_Z$.

raphy is carried out on a Varion model 1720 with disc integrator and temperature programming capability. Melting points are measured using Gallenchamp and are uncorrected.

2.1. Syntheses

Methods of Gaired and Lappin [\[33\]](#page-5-0) and the Robertson [\[34\]](#page-5-0) are used for the synthesis of $\mathbf{1}_E$ and $\mathbf{3}_E$.

2.1.1. (E)--Methyl--nitrostyrene, 1^E [\[18\]](#page-5-0)

Yellow crystals; mp 63–64 ◦C (from EtOH); *m*/*z* 163(*M*⁺ 41.7%), 162(1.8), 146(13.3), 135(10), 117(25.9), 116(45), 115(100), 106(38.3), 91(55), 77(16.7), 63(20). ¹H NMR (CDCl3) δ: 2.5(3H, d, Me), 7.2–7.7(5H, m, ArH), 8.1(1H, s); UV λ_{max} (EtOH), 305 nm, ε_{max} 115; yield 60%.

2.1.2. (E)--Nitrostyrene, 3^E [\[32\]](#page-5-0)

Yellow crystals; mp 60–61 ◦C (from EtOH); *m*/*z* 148(*M*⁺ 31.7%), 117(23.9), 116(41), 115(100), 106(35.3), 91(45), 77(14.7), 63(20). ¹H NMR (CDCl₃) δ: 6.8(2H, d), 7.2–7.7(5H, m, ArH), 8.1(2H, d); UV λmax(EtOH), 300 nm, ε_{max} 115; yield 70%.

The authentic sample of 1_Z is synthesized by the pro-cedure of Ono et al. [\[35\].](#page-5-0) Treatment of (E) - β -methyl- β nitrostyrene, **1***E*, with sodium benzeneselenolate, generated in situ from diphenyl diselenide and NaBH₄ in ethanol, followed by protonation with acetic acid at −78 ◦C afforded *erythro*-β-nitroselenide stereoselectively. Treatment of the βnitroselenide with H_2O_2 at $0\degree C$ resulted in the elimination of benzeneselenic acid to give (*Z*)-β-methyl-β-nitrostyrene, **1***Z*.

2.1.3. (Z)--Methyl--nitrostyrene, 1^Z [\[23,35\]](#page-5-0)

White crystals; mp $50-51$ °C (from EtOH). ¹H NMR (CDCl3) δ: 2.48(3H, d, Me), 7.2–7.7(5H, m, ArH), 6.6(1H, s); UV λ_{max} (EtOH), 270 nm, ε_{max} 104; yield 20%.

2.2. Photoproducts

A solution is prepared by dissolving 2 g of $\mathbf{1}_E$ (or $\mathbf{1}_Z$) in 550 ml of 95% ethanol. The solution is degassed for one half hour with N_2 . The ultraviolet irradiation is stopped after 3 h and the solvent removed under reduced pressure. Photolysis mixture is separated via PTLC; white crystals are obtained.

2.2.1. 1-Phenyl-1,2-propanedione-1-oxime, 2 [\[18\]](#page-5-0)

White crystals; mp 173 ◦C (from EtOH); *m*/*z* 163(*M*⁺ 30%), 158(31), 146(13), 117(23), 116(91), 115(100), 106(33), 91(45), 77(19), 63(17).

 1 H NMR (CDCl₃) δ : 2.5(3H, d, Me), 7.1–7.5(5H, m, ArH); yield 53%.

2.3. Preliminary kinetic studies

Upon irradiation of 3_E , both 3_Z and 4 are generated and identified by NMR.

Sample solutions are prepared by dissolving 1.2×10^{-4} mol of 1_E 1_Z or 3_E in 0.5 ml CD₃Cl in quartz NMR tubes and then degassed under argon atmosphere. Irradiation are carried out using similar conditions such as light intensity, with a low-pressure mercury lamp by a monochromatic UV light with $\lambda_{\text{max}} = 254 \text{ nm}$ at room temperature. The progresses of the photochemical reactions are monitored by ${}^{1}H$ NMR spectroscopy. Changes of nitroolefins are measured by integration of the corresponding starting materials, intermediates and product peaks.

2.3.1. 1-Phenyl-1,2-ethanedione-1-oxime, 4 ¹H NMR (CDCl₃) δ: 7.2–7.7(5H, m, ArH), 9.7(1H, s).

3. Results and discussion

A serious problem with the previous works on the photochemistry of β -nitrostyrenes is the overwhelming usage of UV analyses, where many details were masked [\[5–17\].](#page-5-0) As a follow up on our β -nitrostyrene mechanistic studies [\[16,17\],](#page-5-0) we have employed a 500 MHz NMR in photolysis of (E) - β -methyl- β -nitrostyrene, $\mathbf{1}_E$, (Z) - β methyl- β -nitrostyrene, $\mathbf{1}_Z$, (E) - β -nitrostyrene, $\mathbf{3}_E$, and (E) - β -nitrostyrene, \mathfrak{Z}_Z (paths: a, b', d and d' in Scheme 1). New

Table 1 Ab initio calculations of torsion angles for $\mathbf{1}_E$, $\mathbf{1}_Z$, $\mathbf{3}_E$, and $\mathbf{3}_Z$

 1_{E} (3_E)

findings in this manuscript reveal intermediacy of **1***^Z* in photoconversion of $\mathbf{1}_E$ to 2 as well as photo-rearrangements of $\mathbf{1}_Z$ to 1-phenyl-1,2-propanedione-1-oxime, 2, plus $\mathbf{3}_E$ to 1phenyl-1,2-ethandione-1-oxime, **4**, at different relative rates. Such details were not recognized before; instead, general statements were made to explain the steric aspects of these reactions. For instance, on the photo-rearrangement of β methyl- β -nitrostyrene, 1, to the ketooxime, 2, it was stated: "steric features of *the molecule* which tend to hold the nitrogroup out of the plane of the double bond, i.e., out of conjugation greatly facilitate the reaction" [\[15\].](#page-5-0) However, no clear reference to the geometrical isomerization $(1_E$ versus 1_Z) and/or the electronic state of "*the molecule*" (S₀ versus T1, etc.) was made. One may presume "*the molecule*" they were scrutinizing was $\mathbf{1}_E$ with the electronic state of S_0 . It was then suggested that the β -methyl group distorts the planarity of nitro-alkenyl moiety in β -methyl- β -nitrostyrene; while hydrogen was not able to do such a distortion of the planarity to β -nitrostyrene. Consequently, this distortion of planarity, enhances the $n \rightarrow \pi^*$ excitation to the extent where the oximinoketone, **2**, is formed from photo-rearrangement of β -methyl- β -nitrostyrene; while no trace of 4 was detected from the photo-rearrangement of β -nitrostyrene [\(Scheme 1\)](#page-1-0) [\[5,15\]. H](#page-5-0)owever, the X-ray [\[36\]](#page-5-0) and our semi-empirical calculations did not show any significant difference between the nitro-alkenyl planarity of $\mathbf{1}_E$ compared to $\mathbf{3}_E$. Another word, contrary to what was suggested, β -methyl group in $\mathbf{1}_E$, does not appear to "hold the nitro-group out of the plane of the double bond, i.e., out of conjugation", anymore than the β hydrogen in 3_E . In order to resolve this planarity dilemma,

Fig. 1. Tracing ¹H NMR spectra of (*E*)- β -methyl- β -nitrostyrene, **1***E*, photo-isomerization to (*Z*)- β -methyl- β -nitrostyrene, **1***Z*, followed by photo-rearrangement of $\mathbf{1}_Z$ (and trace $\mathbf{1}_E$) to 1-phenyl-1,2-propanedione-1-oxime, 2.

Fig. 2. Tracing ¹H NMR spectra of (*Z*)- β -methyl- β -nitrostyrene, **1**_{*z*}, photo-rearrangement to 1-phenyl-1,2-propanedione-1-oxime, **2**.

Fig. 3. Changes of $\mathbf{1}_E$, $\mathbf{1}_Z$ and $\mathbf{2}$ during photolysis of $\mathbf{1}_E$ as a function of irradiation times using similar conditions such as light intensity: (a) Photolysis of pure $\mathbf{1}_E$ as a function of time; (b) photoproduction of $\mathbf{1}_Z$ from $\mathbf{1}_E$ followed by photo-conversion of $\mathbf{1}_Z$ to $\mathbf{2}$; (c) photoproduction of $\mathbf{2}$ from $\mathbf{1}_Z$.

we carried out an ab initio survey at HF/Sto-3g, HF/6-31G^{*} and B3LYP/6-31G^{*} levels of theory optimizing $\mathbf{1}_E$, $\mathbf{3}_E$, $\mathbf{1}_Z$ and 3_Z [\(Table 1\).](#page-2-0) Amazingly, they do not show much of difference between nitro-alkenyl planarity of ground states (S_0) of $\mathbf{1}_E$ versus $\mathbf{3}_E$. However, geometrical differences are relatively more pronounced for triplets (T_1) of 1_E and 3_E which were not considered before.

In an attempt to solve this problem experimentally, a pure sample of $\mathbf{1}_E$ [\[24,25\]](#page-5-0) is synthesized and irradiated in ethanol, using a low-pressure mercury lamp with a monochromatic UV light ($\lambda_{\text{max}} = 254 \text{ nm}$). Photochemical changes of $\mathbf{1}_E$ are monitored by a Bruker 500 MHz NMR, every 5 min, through integration of the corresponding 1 H NMR peaks. Intensities of $\mathbf{1}_E$ absorption peaks: a, b and c; gradually decrease as a function of time [\(Fig. 1\).](#page-2-0) Simultaneously, new absorption peaks: a' , b' and c' appear which correspond to 1_Z ($t = 20$ min). Finally, absorptions related to 2: a'' , b'' and c'' ($t = 50$ min) come to existence at the expense of disappearing **1***^E* and **1***^Z* peaks. Traces of benzaldehyde, **13**, suggested by Matsuura et al. [\[25\],](#page-5-0) is clearly detected at 9.8 ppm ($t = 40$ min). In order to substantiate photolysis of $\mathbf{1}_E$, an authentic sample of $\mathbf{1}_Z$ is synthesized [\[35\]](#page-5-0) and irradiated under the same conditions (Fig. 2). Again, the progress of photolysis of **1***^Z* is monitored via ¹H NMR. All 1_Z is converted to 2, except for its trace isomerization to $\mathbf{1}_E$.

Using similar conditions such as light intensity, 1 H NMR tracings preliminary kinetic analysis of conversions $\mathbf{1}_E$ to $\mathbf{1}_Z$ and $\mathbf{1}_Z$ to 2 are carried out (Fig. 3). Reporting ¹H NMR [\(Figs. 1 and 2\)](#page-2-0), instead of 13 C NMR spectral results, is to avoid possible integration errors, due to nuclear Overhauser effects (nOe) [\[37\].](#page-5-0) Thereby, isomerization of $\mathbf{1}_E$ to $\mathbf{1}_Z$ occurs at a relative rate of $k_{i-Me} = 0.083 \text{ s}^{-1}$. Both $\mathbf{1}_E$ and $\mathbf{1}_Z$ go through a nitro-nitrite photo-rearrangement to **2** with relative $k_{\text{r-Me}} = 0.011 \text{ s}^{-1}$ and $k'_{\text{r-Me}} = 0.070 \text{ s}^{-1}$, respectively.

A pure sample of $3E$ [\[24,25\]](#page-5-0) is also synthesized and irradiated under similar condition used for $\mathbf{1}_E$. Its ¹H NMR peaks, including a doublet at 8.05 ppm (H*trans*-olefin), gradually decrease while the doublet of newly born 3_Z (H_{cis}olefin) appears at 6.9 ppm. Meanwhile, the absorptions corresponding to 4 grow. Photo-isomerization of 3_E to 3_Z takes

Scheme 2. Revised provisional mechanism for photochemistry of $\mathbf{1}_E$ and $\mathbf{3}_E$ [\[18\].](#page-5-0)

place at the relative rate $k_{i-H} = 0.011 \text{ s}^{-1}$. The relative rates of photo-rearrangements of 3_E and 3_Z to 4 are measured with $k_r = 0.025 \text{ s}^{-1}$ and $k'_r = 0.010 \text{ s}^{-1}$, respectively.

The previously reported possible mechanism shown in Scheme 2 is now further elucidated by our results. This mechanism, while not totally substantiated yet, appears to complete and unify ideas proposed by Chapman [\[14,17\],](#page-5-0) Pinhey [\[24\],](#page-5-0) Matsuura [\[25\], R](#page-5-0)easoner and us [\[18,26\].](#page-5-0)

4. Conclusion

Using similar conditions such as light intensity, an unprecedented relative rate is found for *cis–trans* photoisomerization of (E) - β -methyl- β -nitrostyrene, $\mathbf{1}_E$, to (Z) - β -methyl- β -nitrostyrene, $\mathbf{1}_Z$ (k_i _{-Me} = 0.083 s⁻¹). Under the same conditions, relative rates are also found for novel photo-rearrangements of: **1***^Z* to 1-phenyl-1,2-propanedione-1-oxime, 2 (k'_{r-Me} = 0.070 s⁻¹); (*Z*)-β-nitrostyrene, 3_{*Z*}, to 1phenyl-1,2-ethandione-1-oxime, **4** ($k'_r = 0.010 s^{-1}$); and 3_E to **4** ($k_r = 0.025 \text{ s}^{-1}$). Further ¹H NMR preliminary kinetic analysis show a nitro-nitrite photo-rearrangement of $\mathbf{1}_E$ to $\mathbf{2}$ with relative $k_{r-Me} = 0.011 \text{ s}^{-1}$. Under the same conditions, photo-isomerization of 3_E to 3_Z takes place at a relative $k_{\rm i\text{-}H} = 0.011 \text{ s}^{-1}$.

Acknowledgments

We acknowledge technical supports of Mr. H. Bijan-Zadeh and Mr. M. Abas-Por and cooperation of Dr. Mahjoob, Dr. A. Heydari, Ms. M. Koohi and Mr. S.M. Musavi, at the Chemistry Department of Tarbiat Modarres University.

References

- [1] L. Ju-Tsung, Y. Ching-Fa, Tetrahedron Lett. 42 (2001) 6147.
- [2] E.J. Corey, H. Estreicher, J. Am. Chem. Soc. 100 (1978) 6294.
- [3] D. Seebach, E.W. Colvin, T. Weller, Chimia 33 (1979) 1.
- [4] A.G.M. Barrett, G.G. Graboski, Chem. Rev. 86 (1986) 751.
- [5] G. Rosini, R. Ballini, Synthesis (1988) 833.
- [6] A.G.M. Barrett, Chem. Soc. Rev. 20 (1991) 95.
- [7] O.L. Chapman, P.G. Clevland, E.D. Hoganson, Chem. Commun. (1966) 110.
- [8] J.T. Pinhey, E. Rizzardo, Chem. Commun. (1965) 362.
- [9] J.S. Cridland, S.T. Reid, Chem. Commun. (1969) 125.
- [10] R. Hunt, S.T. Reid, K.T. Taylor, Tetrahedron Lett. (1972) 2861.
- [11] G.D. Howarth, D.G. Lange, W.A. Szarek, J.K.N. Jones, Can. J. Chem. 47 (1969) 81.
- [12] Y. Kitaura, T. Matsuura, Tetrahedron 27 (1971) 1583.
- [13] D. Dopp, Chem. Ber. 104 (1971) 1058.
- [14] O.L. Chapman, D.C. Heckere, J.W. Reasoner, S.P. Thackaberry, J. Am. Chem. Soc. 88 (1966) 5550.
- [15] R. Hunt, S.T. Reid, J. Chem. Soc. Perkin I (1972) 2527.
- [16] M.B. Greon, E. Havinga, Mol. Photochem. (1974) 699.
- [17] O.L. Chapman, A.A. Griswold, E.D. Hoganson, G. Lenz, J.W. Reasoner, Pure Appl. Chem. 9 (1964) 585.
- [18] M.Z. Kassaee, M.A. Nassari, J. Photochem. Photobiol. A 136 (2000) 41.
- [19] M.Z. Kassaee, E. Vessally, Proceedings of the Ninth Iranian Seminar of Organic Chemistry, Book of Abstract, University of Imam Hossein, 16–18 October, 2001, p. 363.
- [20] M.Z. Kassaee, E. Vessally, Proceedings of the Third Congress of Chemistry, Book of Abstract, Islamic Azad University, 10–11 April, 2002, p. 61.
- [21] M.Z. Kassaee, E. Vessally, Proceedings of the 10th Iranian Seminar of Organic Chemistry, ISOC10, Book of Abstract, University of Guilan, 16–18 October, 2002, pp. 2–196.
- [22] M.Z. Kassaee, E. Vessally, Proceedings of the 55th Pittsburgh Conference, Oral Presentation, Pittcon., March 12, 2004.
- [23] D.B. Miller, P.W. Flanagan, H. Shechter, J. Org. Chem. 41 (1976) 12.
- [24] J.T. Pinhey, E. Rizzardo, Tetrahedron Lett. 41 (1973) 4057.
- [25] T. Matsuura, I. Saito, M. Takami, Tetrahedron Lett. 36 (1975) 3155.
- [26] M.Z. Kassaee, MS Thesis, Western Kentucky University, 1976.
- [27] M.A. Nassari, MS Thesis, Tarbiat Modares University, Tehran, Iran, 1995.
- [28] M.Z. Kassaee, M.A. Nassari, Proceedings of the Third Iranian Seminar of Organic Chemistry, Book of Abstract, University of Arak, 16–18 August, 1996, p. 60.
- [29] M.Z. Kassaee, H. Larijanee, Proceedings of the Seventh Iranian Seminar of Organic Chemistry, Book of Abstract, University of Tehran, 12–13 September, 1999, p. 97 and 169.
- [30] D.C.L. Tang, MS Thesis, Western Kentucky University, 1975.
- [31] B. Priebs, Annals 225 (1884) 339.
- [32] A.L. Bluhm, J. Weinstein, J. Am. Chem. Soc. 87 (1965) 5511.
- [33] C.B. Gaired, G.R. Lappin, J. Org. Chem. (1953) 31.
- [34] D.N. Robertson, J. Org. Chem. 25 (1960) 47.
- [35] N. Ono, A. Kamimura, T. Kawai, A. Kaji, J. Chem. Soc., Chem. Commun. (1987) 1550.
- [36] D. Boys, V. Manriquez, B.K. Cassels, Acta Cryst. C49 (1993) 387.
- [37] M.Z. Kassaee, H. Heydari, M. Hattami, A. Fazli Nia, Macromolecules 36 (2003) 6773.